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Abstract

The classic Jaccard and Sørensen indices of compositional similarity (and other indices

that depend upon the same variables) are notoriously sensitive to sample size, especially

for assemblages with numerous rare species. Further, because these indices are based

solely on presence–absence data, accurate estimators for them are unattainable. We

provide a probabilistic derivation for the classic, incidence-based forms of these indices

and extend this approach to formulate new Jaccard-type or Sørensen-type indices based

on species abundance data. We then propose estimators for these indices that include the

effect of unseen shared species, based on either (replicated) incidence- or abundance-

based sample data. In sampling simulations, these new estimators prove to be

considerably less biased than classic indices when a substantial proportion of species are

missing from samples. Based on species-rich empirical datasets, we show how

incorporating the effect of unseen shared species not only increases accuracy but also

can change the interpretation of results.
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I N TRODUCT ION

Ecologists who conduct field surveys of species richness

have long recognized that it is virtually impossible to detect

all species and their relative abundances with a limited

number or intensity of samples. Sampling limitations create

challenges for making accurate estimates of alpha diversity,

the number of species within local, approximately homo-

geneous assemblages, particularly for assemblages with high

species richness and a large fraction of rare species (Colwell

& Coddington 1994; Chazdon et al. 1998; Colwell et al.

2004; Magurran 2004). To meet this challenge, several

methods have been developed for estimating species

richness from sample data, either through extrapolation of

species accumulation curves, or through application of non-

parametric methods (see reviews by Bunge & Fitzpatrick

1993; Colwell & Coddington 1994; Magurran 2004; Chao, in

press). The latter approach involves the estimation of unseen

species (species that are likely to be present in a larger

homogeneous sample of the assemblage, but that are

missing from actual sample data). Because estimates of

unseen species are based on the number of rare species

observed within samples (Colwell & Coddington 1994;

Chazdon et al. 1998), either abundance data or replicated

incidence samples are required for richness estimation. In

the simplest richness estimators (e.g. Chao1, Chao2, or jack-

knife estimators), rare species are classified as species with a

total abundance of 1 (singletons) or 2 (doubletons) in an

abundance-based sample or that occur in only one sampling

unit (uniques) or in exactly two sampling units (duplicates)

in replicated incidence data. The abundance-based coverage

estimator (ACE) uses additional information based on those

species with 10 or fewer individuals in the sample (Chao

et al. 1993) and the corresponding incidence-based coverage

estimator (ICE) is based on species found in 10 or fewer

sampling units (Lee & Chao 1994; Chazdon et al. 1998;

Magurran 2004).

The same limitations that apply to estimating the alpha

diversity of species assemblages equally apply to estimating

the beta diversity or dissimilarity (complementarity, turnover

or distance) between two assemblages. The Jaccard index of

similarity and the closely related Sørensen index are the two
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oldest and most widely used similarity indices for assessing

compositional similarity of assemblages (sometimes called

�species overlap�) and hence, its complement, dissimilarity.

Both measures are based on the presence/absence of

species in paired assemblages and are simple to compute

(Magurran 2004). Many other similarity indices exist that are

based on the same information: the number of species

shared by two samples and the number of species unique to

each of them (Legendre & Legendre 1998), and new indices

continue to appear (e.g. Lennon et al. 2001). A modified

version of the Sørensen index was developed by Bray &

Curtis (1957), based on abundance data (also known as the

Sørensen abundance index; Magurran 2004), and a large

number of other abundance-based indices have been

developed (Legendre & Legendre 1998), including the

widely applied Morisita–Horn index (Magurran 2004).

Despite their wide application in ecological studies, the

classic Jaccard and Sørensen indices, when computed for

sample data, perform poorly as measures of similarity

between diverse assemblages that include a substantial

fraction of rare species (Wolda 1981; Colwell & Coddington

1994; Plotkin & Muller-Landau 2002), because the sample

data are (usually wrongly) assumed to be true and complete

representations of assemblage composition. [Indeed, with

very few exceptions (e.g. Grassle & Smith 1976; MacKenzie

et al. 2004), nearly all existing approaches to measuring

similarity make this assumption.] In general, as we will show

with simulations, these measures are likely to severely

underestimate true similarity between two (genuinely sim-

ilar) assemblages that contain numerous rare species.

Because many species are missed by the samples, the rare

species that appear in one sample are likely to be different

than the rare species that show up in the other sample, even

if all are actually present in both assemblages. Similar

problems arise from comparing two samples of substantially

different size: simply because it contains fewer individuals or

sampling units, the smaller sample may lack species that

appear in the larger sample. In short, the underestimation of

similarity occurs because of the failure to account for unseen

shared species.

In principle, overestimation of similarity can also occur

when comparing undersampled, high-dominance commu-

nities in which the common species are widespread and rare

ones tend to be locally endemic. In this case, two samples

might yield the same few common species, but fail to reveal

rare species that would differentiate the assemblages in

larger samples (Colwell & Coddington 1994; Ruokolainen &

Tuomisto 2002 discuss a possible example). In nearly all

cases we have examined quantitatively, however, rarity

(either in nature or because of small sample size) increases

the chance that a species will be spuriously absent from one

sample but not from the other, thus negatively biasing

similarity indices. [Fisher (1999, Fig. 8) comes to the same

conclusion for several datasets, based on rarefaction tests.]

Moreover, for the new indices we present here, it can be

shown theoretically that sampling bias, when present, is

always negative. [The authors demonstrate the expected

negative bias mathematically (A. Chao, R. L. Chazdon,

R. K. Colwell & T.-J. Shen, unpublished data); it can be

proved for any abundance models given in Magurran (2004)

and Plotkin & Muller-Landau (2002).]

Recently, interest has intensified in the development and

evaluation of indices to measure beta diversity, or turnover

rate, of species assemblages (Duivenvoorden 1995; Lennon

et al. 2001; Arita & Rodrı́guez 2002, 2004; Condit et al. 2002;

Plotkin & Muller-Landau 2002; Koleff et al. 2003; Rodrı́guez

& Arita 2004), underscoring the need for robust statistical

estimators for inferring compositional similarity from sample

data. Increasing species turnover (decreasing similarity) with

increasing distance between sites may reflect spatial patterns

of dispersal or may be driven by increasing environmental

heterogeneity at greater scales (Harte et al. 1999; Hubbell

2001; Balvanera et al. 2002; Chave & Leigh 2002; Condit et al.

2002; Duivenvoorden et al. 2002; Ruokolainen & Tuomisto

2002; Rodrı́guez & Arita 2004; Valencia et al. 2004).

Unfortunately, most indices of beta diversity rely on the

same information as the classic Jaccard and Sørensen indices

and share the limitations discussed above.

With this problem in mind, Plotkin & Muller-Landau

(2002) developed a Sørensen-type similarity index for

abundance counts using a �parametric� approach that relies

on a gamma distribution to characterize species abundance

structure. Condit et al. (2002) adopt an approach to

measuring beta diversity using Leigh et al.�s (1993) �codom-

inance� index F, the probability that two individuals chosen

randomly from each of two assemblages are the same

species. Although this measure is based on abundance data,

F, itself, is not a statistically valid index of similarity. For two

identical assemblages with many species, F tends to 0.

Moreover, it is possible for any two identical assemblages to

have any value of F from 0 to 1, depending on how many

species are present and patterns of relative abundance. It is

possible, however, to normalize F to produce a valid

similarity index. Chave & Leigh (2002) point out that the

Morisita–Horn index is a normalized version of F.

We begin by developing a new, probabilistic approach for

the classic Jaccard and Sørensen incidence-based indices.

We then extend this approach to formulate Jaccard-type and

Sørensen-type indices that consider species abundances. In

contrast to Plotkin & Muller-Landau (2002), we adopt a

non-parametric approach that does not require any

assumptions about species abundance distributions. We

then propose a method to estimate both incidence-based

and abundance-based Jaccard and Sørensen indices from

sample data, incorporating the effect of unseen shared

species.
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We then carry out sampling simulations with empirical

data sets to assess the relative performance of the

classic Jaccard and Sørensen indices; their new, abun-

dance-based Jaccard and Sørensen counterparts; and the

corresponding Jaccard and Sørensen estimators. We show

that incorporating the effect of unseen species substantially

reduces the sample-size bias of these estimators and

improves their suitability for inferring similarity (or its

complement, dissimilarity) between hyper-diverse assem-

blages for which a large proportion of species are missing

from samples. Finally, we illustrate an application of the new

abundance-based Jaccard index and the Jaccard abundance-

based estimator, using data from a successional study of

tree, sapling and seedling abundance of canopy species.

Based on data sets for rich, tropical insect and plant

assemblages, we show how incorporating the effect of

unseen shared species not only increases accuracy, but also

can change the interpretation of results.

DEVE LOP ING THE NEW IND I C E S AND

EST IMATORS

The classic Sørensen and Jaccard similarity indices

The classic Sørensen and Jaccard indices depend on three

simple incidence counts: the number of species shared by

two assemblages and the number of species unique to each

of them. It has become traditional to refer to these counts as

A, B and C, respectively (Table 1). The classic Jaccard and

Sørensen indices for incidence counts are then

Jclas ¼
A

Aþ B þ C
ð1Þ

and

Lclas ¼
2A

2Aþ B þ C
ð2Þ

(We use L for the Sørensen index to avoid confusion

with S for species.) There is a close, monotonic relation

between the two indices: Lclas ¼ 2Jclas/(Jclas + 1) and

Jclas ¼ 1/(2/Lclas ) 1).

Assume that there are S1 species in Assemblage 1 and S2

species in Assemblage 2. Let the number of shared species

be S12. Then, the incidence counts A, B, C in Table 1

correspond to the A ¼ S12, B ¼ S1 ) S12 and C ¼
S2 ) S12. Substituting these expressions in eqns 1 and 2,

we have an alternate way to write the classic indices that

will be required for the next steps in developing the new

indices:

Jclas ¼
A

Aþ B þ C
¼ S12

S1 þ S2 � S12

ð3Þ

and

Lclas ¼
2A

2Aþ B þ C
¼ 2S12

S1 þ S2

: ð4Þ

A probabilistic approach to the classic Jaccard
and Sørensen indices

The classic Jaccard and Sørensen indices consider only the

presence or absence (incidence) of species. Two pairs of

assemblages, one pair sharing abundant species but not rare

ones and the other pair sharing rare species, but not

common ones, will yield the same index value. From the

point of view of overall assemblage similarity, taking

similarity of assemblage composition to the level of

individuals often makes more sense (Magurran 2004). Our

next objective is to extend the incidence indices to take

account of the relative abundance of species, a prerequisite

for developing index estimators for sampling data that take

account of unseen rare species.

We must first provide a probabilistic derivation of the

classic Jaccard and Sørensen incidence indices. Suppose we

randomly select a species from Assemblage 1 and a species

from Assemblage 2 and then classify each member of the

pair according to whether it is a shared species or not. The

corresponding probabilities are shown graphically in Fig. 1

and specified in Table 2.

Although the probabilities in Table 2 are not counts, they

can be thought of as �normalized counts,� because they sum

to unity. Substituting these probabilities into eqns 1 and 2,

then we have

Jclas ¼
A

Aþ B þ C

¼ ½ðS12=S1ÞðS12=S2Þ�
½ðS12=S1ÞðS12=S2Þ� þ ½ðS12=S1Þð1 � ðS12=S2ÞÞ� þ ½ð1 � ðS12=S1ÞÞðS12=S2Þ�

¼ S12

S1 þ S2 � S12

which is exactly eqn 3. Likewise, we have

Lclas ¼
2A

2AþBþC

¼ 2½ðS12=S1ÞðS12=S2Þ�
2½ðS12=S1ÞðS12=S2Þ� þ ½ðS12=S1Þð1�ðS12=S2ÞÞ� þ ½ð1�ðS12=S1ÞÞðS12=S2Þ�

¼ 2S12

S1 þ S2

which is the same as eqn 4.

Table 1 Species classification counts used in the classic indices

Assemblage 2

Present Absent

Assemblage 1

Present A B

Absent C –
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It might appear that we have made no progress, but

this probabilistic approach lays the groundwork for

developing abundance-based indices, which in turn allow

for the estimation of indices that take into account the

effect of unseen shared species. Note that, using this

approach, we can also calculate the chance that both

randomly chosen species are non-shared species (Case 4

as shown in Fig. 1 and Table 2). However, the basic

concept for the Jaccard and Sørensen indices is

based only on information for the other three cells

(Cases 1–3).

Extending the probabilistic approach to abundance-based
indices

Let the probabilities of species discovery (which depend

primarily on relative abundance, assuming random mixing

and equivalent detectability) in Assemblages 1 and 2 be

denoted, respectively, by (p1, p2, …, pS1
) and (p1, p2, …, pS2

),

where pi > 0, pi > 0 and
PS1

i ¼ 1 pi ¼
PS2

i ¼ 1 pi ¼ 1. We no

longer treat all species equally because some species are

common and some are rare. Instead, the basic idea for

handling abundance counts is that we treat all individuals

equally. Adapting the approach from the previous section,

we randomly select one individual from Assemblage 1 and

one individual from Assemblage 2. For each individual of the

pair, note whether it belongs to a shared species or not.

We now derive the general formulas for the abundance-

based versions of the Jaccard and Sørensen indices.

Without loss of generality, we assume the first S12 species

are shared species, that is, the shared species are indexed

by 1,2,…,S12. In Assemblage 1, let U denote the total

relative abundances of individuals belonging to the shared

species, U ¼ p1 + p2 + � � � + pS12
. Likewise in Assemblage

2, let V denote the total relative abundances of individuals

belonging to shared species, V ¼ p1 + p2 + � � � + pS12
.

Table 3 shows the probabilities that two individuals, one

from each assemblage, represent each of the usual four

categories.

Based on eqns 1 and 2 for the three probabilities (A, B

and C in Table 3), we obtain the following abundance-based

indices in terms of U and V:

Jabd ¼ A

Aþ B þ C
¼ UV

U þV �UV
ð5Þ

a1 a2

Case 1

a1 a2

Case 2

a1 a2

Case 3

a1 a2

Case 4

Species from a 1
is shared

Species from a2
is shared

Species from a 1
is not shared

Species from a2
is not sharedFigure 1 A graphical representation of the

meaning of shared species for two assem-

blages. Assemblage 1 (a1) is grey, Assem-

blage 2 (a2) is white. The grey dot represents

a species selected at random from Assem-

blage 1 and the white dot represents a

species selected at random from Assemblage

2. Case 1 is the only case in which both

species are shared species (but not necessar-

ily the same species). In Case 2, the species

chosen at random from Assemblage 1 is a

shared species, but the species chosen from

Assemblage 2 is not shared with Assemblage

1. The reverse is true for Case 3. In Case 4,

neither of the chosen species is a shared

species. These patterns are described mathe-

matically in Table 2.

Table 2 Probabilistic derivation of species counts for the classic

indices

Select any species from Assemblage 2

Shared Non-shared

Select any species from Assemblage 1

Shared A ¼ S12

S1

S12

S2

(Case 1)

B ¼ S12

S1
1 � S12

S2

� �
(Case 2)

Non-shared C ¼ 1 � S12

S1

� �
S12

S2

(Case 3)

1 � S12

S1

� �
1 � S12

S2

� �
(Case 4)

Table 3 Probabilities for individual-based species counts

Select any individual from Assemblage 2

Shared Non-shared

Select any individual from Assemblage 1

Shared A ¼ UV B ¼ U(1 ) V)

Non-shared C ¼ (1 ) U)V D ¼ (1 ) U)(1 ) V)
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and

Labd ¼ 2A

2Aþ B þ C
¼ 2UV

U þV
ð6Þ

As U and V represent the total abundances of the shared

species in Assemblages 1 and 2, respectively, we see that

both indices reach 1 for identical assemblages and tend to 0

for disjoint assemblages. In the latter case, for example,

Labd ¼ 2/[(1/U) + (1/V)] tends to 0 as both U and V

approach 0.

Estimation of the abundance-based indices from sample
data

Up to now, we have considered only the species and

individuals observed in two assemblages. Both the classic

Jaccard and Sørensen and the new, abundance-based

versions assume full and complete knowledge of the two

assemblages being contrasted. In practice, we need to

estimate similarity indices from sample data, the task that we

turn to now. Our approach is non-parametric in the sense

that we do not need to postulate any particular species

abundance distribution to derive the estimators, which are

therefore valid under many statistical abundance models

(e.g. log-normal, broken stick, gamma, etc.). The derivation

does assume that the number of species is finite so that

species discovery probabilities are bounded below. [The

authors show that the estimators are valid under many of

the statistical abundance models (A. Chao, R. L. Chazdon,

R. K. Colwell & T.-J. Shen, unpublished data) (e.g.

log-normal, exponential, gamma, negative binomial, Zipf–

Mandelbrot, broken-stick models, etc.) that appear in

Magurran (2004, Table 2.1) or in Plotkin & Muller-Landau

(2002, Table 1).]

A random sample of n individuals (Sample 1) is taken from

Assemblage 1 and a random sample of m individuals (Sample

2) is taken from Assemblage 2. Denote the species frequencies

in the samples by (X1, X2, …, XS1
) and (Y1, Y2, …, YS2

),

respectively. (Note that if a species is missing from a sample,

Xi or Yi will equal zero.) Thus, the pair of frequencies for the

S12 species truly shared by the two assemblages are

(X1, Y1)(X2, Y2)…(XS12
, YS12

). Assume that D12 of the S12

shared species available are actually observed in both samples,

and their frequencies are the first D12 pairs. Thus, an

additional S12 ) D12 species are shared by the two assem-

blages, but absent from one or both of the samples. The

greater the frequencies of rare, shared species observed in one

of the two samples, the more probable it is that additional

shared species are present in both assemblages, but are absent

from one or both samples. We refer to these as unseen shared

species.

To incorporate the effect of unseen shared species on the

probabilities of Table 3, we use the frequencies of observed

rare, shared species to estimate an appropriate adjustment

term for U and V to account for unseen shared species. We

first define the indicator function I(expression) such that

I ¼ 1 if �expression� is true and I ¼ 0 if �expression� is false.

Let f1þ ¼
PD12

i¼1 I Xi ¼ 1;Yi � 1½ � be the observed num-

ber of shared species that are singletons (Xi ¼ 1) in Sample 1

(these species must be present in Sample 2, but may have

any abundance). Now, let f2+ be the observed number of

shared species that are doubletons (Xi ¼ 2) in Sample 1.

Similarly, we define f+1 and f+2 to be the observed number

of shared species that are, respectively, singletons (Yi ¼ 1)

and doubletons (Yi ¼ 2) in Sample 2.

Then the proposed estimator for U is

Û ¼
XD12

i¼1

Xi

n
þ ðm � 1Þ

m

fþ1

2fþ2

XD12

i¼1

Xi

n
I ðYi ¼ 1Þ ð7Þ

Notice that the first term in the right-hand side of eqn 7

denotes the observed total of frequencies associated with

the observed shared species; the second term accounts for

the estimated effect of unseen shared species. Similarly, we

have

V̂ ¼
XD12

i¼1

Yi

m
þ ðn� 1Þ

n

f1þ
2f2þ

XD12

i¼1

Yi

m
I ðXi ¼ 1Þ ð8Þ

When f+2 ¼ 0 or f2+ ¼ 0, replace f+2 and f2+ in the

denominators by f+2 + 1 or f2+ + 1, respectively. If the

value of Û or V̂ is greater than 1 (which rarely happens),

then it is replaced by 1. Our proposed abundance-based

Jaccard and Sørensen estimators are

Ĵabd ¼ Û V̂

Û þ V̂ � Û V̂
ð9Þ

and

L̂abd ¼ 2Û V̂

Û þ V̂
ð10Þ

The variances for these two estimators can be derived by

a bootstrap method. (The complete derivation of eqns 7

and 8 and details on the bootstrap procedure for computing

variance estimators for eqns 9 and 10 are available upon

request from the first author.)

Estimation of similarity indices from incidence frequencies

Because information about the frequencies and identities of

rare species provides the critical information for adjusting

similarity indices to account for the effect of unseen shared

species, a simple pair of lists of the species present in two

assemblages (incidence data) cannot be used, even in

principle, to adjust similarity indices for the effect of unseen

species. On the other hand, the estimation-based approach
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can be extended to replicated incidence (presence–absence)

data.

Suppose we take a set of w replicated incidence samples

from Assemblage X and a set of z replicated incidence

samples from Assemblage Y. For both sets of samples

combined, there are S species. The number of samples in

which a species is found in Assemblage X or Y is the

frequency for that species in that sample set. The frequencies

for species i are thus defined as

Xi ¼
Xw
j¼1

xij and Yi ¼
Xz
j¼1

yij ;

where xij and yij represent the presence (1) or absence (0) of

species i in sample j.

Note that Xi or Yi will be zero for some species, unless all

species are shared and observed.

Under the assumption that replicate incidence samples

are statistically homogeneous (within each assemblage), the

chance of a species being present in a particular sample is

proportional to its relative abundance in the assemblage, and

the frequency vectors Xi or Yi are thus statistical proxies for

the relative abundance of species in Assemblages X and Y

(e.g. Chao 2004; Colwell et al. 2004). Thus, with minor

changes, eqns 7 and 8 can be used to compute adjusted

probabilities that a randomly chosen incidence (species

detection) from each of the two assemblages will both

represent shared species (though not necessarily the same

shared species).

For replicated incidence data, f1+ is the number of observed

shared species that occur in exactly one sample (Xi ¼ 1) in

X and f2+ is the number of observed shared species that occur

in exactly two samples (Xi ¼ 2) in X; f+1 and f+2 are

the corresponding numbers for sample matrix Y. Define

the sum of the incidence frequencies for the matrices as

n ¼
XS
i¼1

Xi and m ¼
XS
i¼1

Yi :

Then the proposed estimators are

Ûinc ¼
XD12

i¼1

Xi

n
þ z � 1ð Þ

z

fþ1

2fþ2

XD12

i¼1

Xi

n
I Yi ¼ 1ð Þ

� �
ð11Þ

and

V̂inc ¼
XD12

i¼1

Yi

m
þ w � 1ð Þ

w

f1þ
2f2þ

XD12

i¼1

Yi

m
I Xi ¼ 1ð Þ

� �
ð12Þ

(The same modifications described for eqns 7 and 8 may be

applied here if f+2 ¼ 0 or f2+ ¼ 0.) Thus, our proposed

incidence-based Jaccard and Sørensen estimators are

Ĵinc ¼
ÛincV̂inc

Ûinc þ V̂inc � ÛincV̂inc

ð13Þ

and

L̂inc ¼
2ÛincV̂inc

Ûinc þ V̂inc

: ð14Þ

PER FORMANCE T E ST S : C LASS I C VS . NEW IND I C E S

Indices tested

We carried out performance tests for: (1) the classic Jaccard

and Sørensen indices (eqns 1 and 2); (2) the new,

abundance-based Jaccard and Sørensen indices (eqns 5

and 6); (3) the estimators for the abundance-based indices

(eqns 9 and 10); and (4) the replicated-incidence estimators

for the abundance-based indices (eqns 13 and 14).

Data sets used in the tests

We conducted the performance tests on a large, species-rich

data set for tropical rainforest ants (Longino et al. 2002),

collected using several replicated, mass-collecting techniques

at La Selva Biological Station in Costa Rica. Here, we present

representative results for three collection methods: Berlese

extraction of soil samples (217 samples, 4318 individuals, 117

species, of which 19 were singletons), Malaise trap samples for

flying and crawling insects (62 samples, 1660 individuals, 103

species, of which 35 were singletons), and Fogging samples

from canopy fogging (459 samples, 26302 individuals, 165

species of which 19 were singletons). [Relative abundance

diagrams appear in Longino et al. (2002).] As Longino et al.

(2002) point out, these three methods intentionally sample

different, but overlapping segments of the local ant fauna.

Whereas the raw species sum for the three methods would be

117 + 103 + 165 ¼ 385 species, the actual number of

species captured by the three methods together was only

276 species. Parallel tests for other high-richness data sets,

including the rainforest tree data discussed later in this paper,

yielded concordant results (A. Chao, R. L. Chazdon, R. K.

Colwell & T.-J. Shen, unpublished data).

The tests

Although the classic Jaccard and Sørensen indices and our

new indices all measure �similarity,� they are intended to

measure different aspects of this construct: the classic indices

ostensibly measure similarity in species composition while

ignoring relative abundance (although they are strongly

affected by it, when sampling is involved), whereas our new

indices [and many others (Legendre & Legendre 1998;

Magurran 2004)] explicitly consider relative abundance.

Thus, for any particular data set, differences in the absolute

magnitude of incidence- vs. abundance-based Jaccard or

Sørensen values (or indeed, differences between most other

indices of similarity) are meaningless, in themselves.
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Nevertheless, indices of compositional similarity can be

compared in terms of their performance in tests of

sensitivity to undersampling. Using the ant data, we illustrate

three tests: (1) Test 1: equal-sized samples from a single data

set (within-assemblage rarefaction); (2) Test 2: unequal-sized

samples from a single data set; and (3) Test 3: equal-

proportion samples from two data sets (between-assemblage

rarefaction). For purposes of these tests, we treated the ant

data from each collecting method (Berlese, Malaise, or

Fogging) as a separate, complete �assemblage,� referred to

here as a sampling pool. Samples of specified sizes (in terms of

numbers of individuals) were then selected, at random, with

replacement, from these pools. Of course, not all species

present in a sampling pool are represented in smaller

samples. However, because sampling was done with

replacement, not all species are present even when the

number of individuals selected is the same as the number of

individuals in the pool.

RESUL T S

Test 1: Equal-sized samples from a single data set

All similarity indices yield a true value of 1 when a complete

sampling pool (assemblage) is compared with itself. What

happens when a similarity index is computed for two

random samples of a single sampling pool? If an index is

unbiased by sample size, it should yield a value of 1 when

applied to samples of any size. First, we randomly sampled

individuals (with replacement) from the pooled ant data for

a single collecting method to produce pairs of samples

having the same number of individuals as the pools

themselves (full samples). Next, we randomly selected

smaller samples, each totalling one-half the number of

individuals in the original sampling pool, then computed

similarity indices for this sample pair. We then repeated this

procedure for a pair of samples each 1/4 the size of the

original pool, then a pair 1/8 the size of the pool, and so on,

successively halving sample size, down to 1/64 the original

number of individuals. (Note that this is quite a severe test

of undersampling bias, even for these very large pools.) This

entire process was repeated 1000 times and means taken, for

each test of each index, and for each of the three ant

collecting methods.

Figure 2 shows representative results of this test for the

classic Jaccard and Sørensen indices (first column of panels,

Test 1: Berlese rarefaction). Clearly both of these indices

were quite sensitive to undersampling. Figure 3 (first column

of panels) shows the corresponding results for the new

indices for this test. The new abundance-based Jaccard and

Sørensen indices, without adjustment for unseen shared

species (Jabd and Labd), were also sensitive to sample size. In
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Figure 2 Random sampling tests of the classic Jaccard (Jclas, eqn 1) and Sørensen (Lclas, eqn 2) overlap indices. The graphs show the effect

on each index of considering random samples composed of 1/1 (Full), 1/2, 1/4, …, 1/64 of the abundances or incidence-equivalents in the

sampling pools, sampled with replacement. (The labels on the lower left graph are the same for all graphs.) Column 1 (Test 1: Berlese

rarefaction) shows similarity index values for equal-sized, paired samples from the Berlese ant data set. Column 2 (Test 2: Berlese unequal)

shows index values for comparisons of samples of decreasing size vs. a sample of the same size as the full Berlese ant data set. Column 3

(Malaise–Fog rarefaction) shows similarity index values for equal-proportion, paired samples (Test 3) from the Malaise vs. the Fogging ant

data set, a high-similarity comparison. Column 4 (Malaise–Berlese rarefaction) shows similarity index values for equal- proportion, paired

samples (Test 3) from the Berlese vs. the Malaise ant data set, a low-similarity comparison. The true value of each index for the sampling

pools considered are shown by horizontal dotted lines in the columns for Test 3 (Malaise–Fog and Malaise–Berlese rarefaction). The true

index value for Test 1 and Test 2 is 1.0, the top of the graphs.
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Figure 3 Random sampling tests the new overlap indices. The graphs show the effect on each index of considering random samples

composed of 1/1 (Full), 1/2, 1/4, …, 1/64 of the abundances or incidence-equivalents in the sampling pools, sampled with replacement.

(The labels on the lower left graph are the same for all graphs.) Columns are described in the caption for Fig. 2. Jaccard indices: Jabd is the new

abundance-based Jaccard index, not adjusted for unseen species, computed by eqn 5. Ĵabd is the corresponding abundance-based estimator

that takes unseen species into account, computed by eqn 9. The estimator based on replicated incidence data, Ĵinc, is computed by eqn 13.

Sørensen indices: Labd is the new abundance-based Sørensen index, not adjusted for unseen species, computed by eqn 6. L̂abd is the

corresponding abundance-based estimator that takes unseen species into account, computed by eqn 10. The estimator based on replicated

incidence data, L̂inc, is computed by eqn 14. The true value of each index for the sampling pools considered are shown by horizontal dotted

lines in the columns for Test 3 (Malaise–Fog and Malaise–Berlese rarefaction). The true index value for Test 1 and Test 2 is 1.0, the top of the

graphs. To allow a valid comparison of the incidence-based estimators (Ĵinc and L̂inc) with the corresponding abundance-based estimators

(Ĵabdand L̂abd, respectively), the X-axis for each incidence-based estimator was re-scaled so that the minimum number of incidences matches

the minimum abundance of the corresponding abundance-based estimator, thus equalizing the amount of statistical information.
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contrast, the Jaccard and Sørensen estimators, which include

the estimated effect of unseen shared species, proved to be

less sensitive to undersampling, remaining substantially

closer to 1 even for small samples (Fig. 3). This was true

for both the abundance-based estimators (Ĵabd and L̂abd) and

the estimators based on replicated incidence data (Ĵinc and

L̂inc).

Test 2: Unequal-sized samples from a single data set

A similarity index should ideally be robust to sample size not

only for equal-sized samples, but also for samples of

unequal size. To test for this property we computed

similarity indices for samples of successively smaller size, vs.

�full� samples, equal in number of individuals to the number

in the corresponding sampling pool. As with the first test, an

ideal index should remain at 1, regardless of the discrepancy

in sample sizes. Figures 2 and 3 (second column, Test 2:

Berlese unequal) show such a test for the Berlese sample ant

data, using samples created by the same scheme outlined for

the first method. Even more than in the first test, the classic

Jaccard and Sørensen indices (Fig. 2) were strongly affected

by the size of the sample, leading to a severe negative

bias when one sample was markedly smaller than the

full sample. In contrast, the new Jaccard and Sørensen

estimators (Fig. 3, second column) were strikingly resistant

to undersampling, including both abundance-based estima-

tors (Ĵabd and L̂abd) and the estimators based on replicated

incidence data (Ĵinc and L̂inc).

Equal-proportion samples from two data sets

It is all very well for a similarity index to be robust to sample

size in comparing paired samples from the same pool, but

an index is of little use if it does not retain that robustness in

comparing different data sets, while successfully detecting

compositional differences between them. We performed the

same sample size comparison procedures described for the

first set of tests, but instead of comparing sample pairs from

the same sampling pool, we compared successively smaller

sample pairs from the Malaise and Fogging [high similarity

(Longino et al. 2002)], and from the Malaise and Berlese

(low similarity) data sets. The results for the classic Jaccard

and Sørensen indices appear in the third and fourth columns

of Fig. 2. An ideal index would yield and maintain the true

value computed for the full pools (the dotted horizontal line

in each panel) in the face of rarefaction. The classic Jaccard

and Sørensen indices proved quite sensitive to undersam-

pling in this test (Fig. 2). The new abundance-based Jaccard

and Sørensen indices, uncorrected for unseen species (Jabd

and Labd in third and fourth columns of Fig. 3), also suffer

from undersampling bias, but the bias is quite substantially

reduced for their abundance-based counterparts corrected

for unseen species (Ĵabd and L̂abd in third and fourth

columns of Fig. 3) as well as for the corresponding

estimators based on replicated incidence data (Ĵinc and L̂inc

in third and fourth columns of Fig. 3).

APP L I CAT ION

As an example of the application of the new indices, we

apply the classic Jaccard index (eqn 1), the new abundance-

based Jaccard index (eqn 5) and its estimator (eqn 9) to

data from two mature and four second-growth rainforest

sites in Costa Rica. We examine compositional similarity

between species of trees ‡ 25 cm diameter at breast height

(DBH; canopy individuals), canopy tree saplings (1–5 cm

DBH) and canopy tree seedlings (> 20 cm height, but

< 1 cm DBH) within four second-growth forests of

different age since pasture abandonment and in two old-

growth forests in the same study area. During early stages of

succession, when the forest canopy is first beginning to

close, fast-growing, shade-intolerant colonizing tree species

are present as canopy trees and are also found as smaller

individuals in the understory, as seedlings and saplings. As

time progresses and the understory becomes more shaded,

these shade-intolerant tree species are eliminated from the

seedling and sapling pool and shade-tolerant species readily

colonize these small size classes. These shade-tolerant

species are represented by seedlings and saplings, but have

few or no canopy trees present, gradually augmenting tree

species richness as the forest matures (Guariguata et al.

1997; Table 4). Thus, we would predict that, as secondary

forests mature, compositional similarity between tree species

Table 4 Observed patterns of species richness of tree seedlings,

saplings and canopy individuals in 1 ha plots in four second-

growth and two old-growth forests in year 2000

Site Age

Sobs

seedlings

Sobs

saplings

Sobs

canopy trees

LSUR 15 45 68 12

TIR 18 49 74 16

LEP 23 47 67 24

CR 28 57 91 33

LSUR old-growth > 200 47 101 37

LEP old-growth > 200 69 102 43

All trees and saplings were marked and measured for diameter

within a 1 ha plot in each forest. Seedlings were sampled in 144

1 · 5 m quadrats within the 1 ha plot, for a total area sampled of

0.072 ha. In these analyses, we included only canopy tree species;

shrubs, treelets and midstory trees were excluded. Note that young

sites show a low number of canopy tree species per ha (individuals

‡ 25 cm DBH) and fewer sapling species compared with old-

growth forests, but differences in seedling species richness were

less pronounced.
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and seedlings or saplings would initially be high, but would

quickly decline to a minimum during intermediate stages of

succession and then begin to increase later in succession as

shade-tolerant trees reach reproductive maturity and pro-

duce seedlings that can establish, grow and survive.

The classic Jaccard index (eqn 1) showed low compo-

sitional similarity between trees and seedlings for the four

second-growth forests compared with the old-growth

forests, with similarity decreasing slightly with age among

the four second-growth forests (Fig. 4). Similarity between

trees and saplings, in contrast, showed gradual increases

from the youngest forest to the older second-growth forest,

continuing the trend to old-growth forests (Fig. 4).

The abundance-based Jaccard index (eqn 5) showed a

strikingly different pattern across the six forest stands.

Compositional similarity between seedling and tree assem-

blages and between sapling and tree assemblages was

initially high in the youngest stand, as we had predicted. As

the forest matures, tree seedling and sapling pools become

enriched by shade-tolerant species not represented as

canopy trees, resulting in a decreasing compositional

similarity that reached a minimum in the 23-year-old

LEP stand (Fig. 4). This minimum similarity represents a

point in forest succession of maximum recruitment

limitation for both seedlings and saplings. In the oldest

second-growth plot, CR, the abundance-based Jaccard

index began to increase, reflecting recruitment of shade-

tolerant species in all three-size classes (Fig. 4). The

similarity index continued to increase and stabilized at

0.4–0.5 in the two old-growth stands. With the exception

of one old-growth stand, similarity indices were higher for

seedlings vs. trees than for saplings vs. trees. At the scale

of 1 ha plots, compositional similarity between canopy

trees and seedling and sapling size classes in old-growth

forests was comparable to that observed within a 15-year-

old second-growth forest, but greater than that observed in

second-growth forests of intermediate age. By design, the

abundance-based Jaccard index responds sensitively to

changes in total relative abundances of shared species

during forest succession.

The abundance-based Jaccard estimator (eqn 9), which

incorporates the effects of unseen shared species, showed

similar general trends across stands when compared

with the abundance-based Jaccard index (Fig. 4). The

28-year-old second-growth stand, however, had nearly

comparable estimates of similarity compared with the

two old-growth stands, suggesting that the estimator is

responding to rare or infrequent species that are shared

between the size classes (Fig. 4). The estimator for sapling

vs. tree similarity was higher than for seedling vs. trees in

the TIR second-growth site, indicating that this stand has

more rare species of shared saplings than seedlings.

CONCLUS IONS

Because similarity is a qualitative human construct, it has no

precise mathematical definition. Nevertheless, measuring

�similarity� relies on quantitative indices devised for the

purpose, and in practice, we may expect that similarity

indices fulfil reasonable criteria for their mathematical

behaviour (Legendre & Legendre 1998). Given indices that

make sense mathematically, it is their statistical performance

under the realities of field sampling that we have concerned

ourselves with here, particularly for species-rich taxa for

which complete inventories are impractical or even

impossible.
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Figure 4 Compositional similarity between canopy trees and

seedlings and canopy trees and saplings in four second-growth

forests of increasing age and in two old-growth forests. Results are

shown for Jclas, the classic Jaccard index (eqn 1; top panel), for the

new abundance-based Jaccard index, Jabd (eqn 5) not adjusted for

unseen species (middle panel), and for Ĵabd, the new abundance-

based Jaccard estimator that takes unseen species into account

(eqn 9; error bars are 1 SE, computed by a bootstrapping

procedure; details available from the first author; A. Chao, R. L.

Chazdon, R. K. Colwell & T.-J. Shen, unpublished data). These

analyses include only canopy tree species; shrubs, treelets and

midstory tree species were excluded.
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Using sampling simulations applied to representative

field data sets, we confirmed that two of the most widely

used classic indices, Jaccard and Sørensen, are negatively

biased under conditions of undersampling, often quite

substantially (Fig. 2). Our objective was to develop new,

probability-based indices that reduce undersampling bias by

estimating and compensating for the effects of unseen,

shared species. We based a new similarity index on the

probability that two randomly chosen individuals, one from

each of two samples, both belong to any of the species

shared by the two samples [not necessarily to the same

shared species, the basis of F (Chave & Leigh 2002; Condit

et al. 2002) and the Morisita–Horn index]. This approach

opened the way to the crucial step, adjusting this probability

to account for the chance that larger samples would reveal a

larger proportion of shared species. As anticipated, the new

indices consistently reduced undersampling bias in the per-

formance tests, in most circumstances quite substantially.

Inevitably some bias remains, especially under severe

undersampling and for highly dissimilar samples. Under

such conditions, relatively little information exists to guide

bias reduction.

Ecologists distinguish two aspects of the compositional

similarity of species assemblages: similarity of species lists

(incidence) and similarity of species� relative abundances.

Classic abundance-based indices (e.g. Morisita–Horn or

Bray–Curtis) match abundances, species-by-species. Our

new indices take an intermediate path, by assessing the

probability that individuals belong to shared vs. unshared

species, without regard to which species they belong to.

Unfortunately for many studies, unreplicated, pure incidence

data (pairs of species lists) provide no information that can

be used to estimate the number of unseen, shared species.

In principle, it may be possible to derive estimators that use

abundance data to correct pure incidence similarity indices

for unseen species, but it is currently statistically difficult for

biologically realistic data. However, we recommend the new

indices for any application in which not only species

matching but similarity of relative abundance is of interest.

Moreover, these new indices are better suited than the

corresponding classic indices for assessing compositional

similarity between samples that differ in size, are known or

suspected to be undersampled, or are likely to contain

numerous rare species.
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