Appendix D. Chao's Abundance-based Jaccard and Sørensen Similarity Indexes and Their Estimators

Chao's Abundance-based Jaccard and Sørensen Indexes

Let the probabilities of species discovery Assemblages 1 and 2 be denoted respectively by \(p_1, p_2, \ldots, p_{s_1} \) and \(\pi_1, \pi_2, \ldots, \pi_{s_2} \), where \(p_i > 0, \pi_i > 0 \) and \(\sum_{i=1}^{s_1} p_i = \sum_{i=1}^{s_2} \pi_i = 1 \). Without loss of generality, we assume the first \(s_{12} \) species are shared species, that is, the shared species are indexed by \(1, 2, \ldots, s_{12} \). In Assemblage 1, let \(U \) denote the total relative abundances of individuals belonging to the shared species, \(U = p_1 + p_2 + \ldots + p_{s_{12}} \). Likewise in Assemblage 2, let \(V \) denote the total relative abundances of individuals belonging to shared species, \(V = \pi_1 + \pi_2 + \ldots + \pi_{s_{12}} \). We obtain the following abundance-based indices in terms of \(U \) and \(V \):

\[
J_{\text{abd}} = \frac{UV}{U + V - UV} \quad \text{and} \quad L_{\text{abd}} = \frac{2UV}{U + V}.
\]

(In EstimateS output, \(J_{\text{abd}} \) is called the "Chao-Jaccard-Raw Abundance-based" estimator and \(L_{\text{abd}} \) is called the "Chao-Sørensen-Raw Abundance-based" estimator.)

Estimators for the Indexes Based on Abundance Data

A random sample of \(n \) individuals (Sample 1) is taken from Assemblage 1 and a random sample of \(m \) individuals (Sample 2) is taken from Assemblage 2. Denote the species frequencies in the samples by \((X_1, X_2, \ldots, X_{s_1}) \) and \((Y_1, Y_2, \ldots, Y_{s_2}) \), respectively. (Note that if a species is missing from a sample, \(X_i \) or \(Y_i \) will equal zero.) Thus the pair of frequencies for the \(s_{12} \) species truly shared by the two assemblages are \((X_1, Y_1)(X_2, Y_2)(X_{s_{12}}, Y_{s_{12}}) \). Assume that \(D_{12} \) of the \(s_{12} \) shared species available are actually observed in both samples, and their frequencies are the first \(D_{12} \) pairs. Thus, an additional \(s_{12} - D_{12} \) species are shared by the two assemblages, but absent from one or both of the samples.

To incorporate the effect of unseen shared species, we use the frequencies of observed rare, shared species to estimate an appropriate adjustment term for \(U \) and \(V \) to account for unseen shared species. We first define the indicator function \(I(\text{expression}) \) such that \(I = 1 \) if \(\text{expression} \) is true, and \(I = 0 \) if \(\text{expression} \) is false. Let \(f_{1s} = \sum_{i=1}^{D_{12}} I\left[X_i = 1, Y_i \geq 1\right] \) be the
observed number of shared species that are singletons \((X_i = 1)\) in Sample 1 (these species must be present in Sample 2, but may have any abundance). Now, let \(f_{2+}\) be the observed number of shared species that are doubletons \((X_i = 2)\) in Sample 1. Similarly, we define \(f_{1+}\) and \(f_{2+}\) to be the observed number of shared species that are, respectively, singletons \((Y_i = 1)\) and doubletons \((Y_i = 2)\) in Sample 2.

Then the estimator for \(U\) is

\[
\hat{U} = \frac{1}{n} \sum_{i=1}^{D} X_i + \frac{(m-1)}{m} \frac{f_{1+}}{2f_{2+}} \sum_{i=1}^{D} X_i I(Y_i = 1).
\]

Notice that the first term in the right hand side of this equation denotes the observed total of frequencies associated with the observed shared species; the second term accounts for the estimated effect of unseen shared species. Similarly, we have

\[
\hat{V} = \frac{1}{m} \sum_{i=1}^{D} Y_i + \frac{(n-1)}{n} \frac{f_{1+}}{2f_{2+}} \sum_{i=1}^{D} Y_i I(X_i = 1).
\]

When \(f_{2+} = 0\) or \(f_{2+} = 0\), replace \(f_{2+}\) and \(f_{2+}\) in the denominators by \(f_{2+} + 1\) or \(f_{2+} + 1\), respectively. If the value of \(\hat{U}\) or \(\hat{V}\) is greater than 1 (which rarely happens), then it is replaced by 1. Our proposed abundance-based Jaccard and Sørensen estimators are

\[
\hat{J}_{ab} = \frac{\hat{U}\hat{V}}{\hat{U} + \hat{V} - \hat{U}\hat{V}} \quad \text{and} \quad \hat{L}_{ab} = \frac{2\hat{U}\hat{V}}{\hat{U} + \hat{V}}
\]

(In EstimateS output, \(\hat{J}_{ab}\) is called the "Chao-Jaccard-Est Abundance-based" estimator and \(\hat{L}_{ab}\) is called the "Chao-Sørensen-Est Abundance-based" estimator.)

Estimators for the Indexes Based on Replicated Incidence Data

Suppose we take a set of \(w\) replicated incidence samples from Assemblage \(X\) and a set of \(z\) replicated incidence samples from Assemblage \(Y\). For both sets of samples combined, there are \(S\) species. The number of samples in which a species is found in Assemblage \(X\) or \(Y\) is the frequency for that species in that sample set. The frequencies for species \(i\) are thus defined as

\[
X_i = \sum_{j=1}^{w} x_{ij} \quad \text{and} \quad Y_i = \sum_{j=1}^{z} y_{ij},
\]
where x_{ij} and y_{ij} represent the presence (1) or absence (0) of species i in sample j. Note that X_i or Y_i will be zero for some species, unless all species are shared and observed.

For replicated incidence data, f_{i1} is the number of observed shared species that occur in exactly one sample ($X_i = 1$) in X and f_{i2} is the number of observed shared species that occur in exactly two samples ($X_i = 2$) in X; f_{i1} and f_{i2} are the corresponding numbers for sample matrix Y. Define the sum of the incidence frequencies for the matrices as

$$n = \sum_{i=1}^{S} X_i \text{ and } m = \sum_{i=1}^{S} Y_i.$$

Then the proposed estimators are

$$\hat{U}_{inc} = \frac{\sum_{i=1}^{D_{12}} X_i}{n} + \left(\frac{z-1}{z} \right) \frac{f_{i1}}{2f_{i2}} \sum_{i=1}^{D_{12}} \left[\frac{X_i}{n} I(Y_i = 1) \right]$$

and

$$\hat{V}_{inc} = \frac{\sum_{i=1}^{D_{12}} Y_i}{m} + \left(\frac{w-1}{w} \right) \frac{f_{i1}}{2f_{i2}} \sum_{i=1}^{D_{12}} \left[\frac{Y_i}{m} I(X_i = 1) \right]$$

(The same modifications described for the abundance-based equations may be applied here if $f_{i2} = 0$ or $f_{i2} = 0$.) Thus, our proposed incidence-based Jaccard and Sørensen estimators are

$$\hat{J}_{inc} = \frac{\hat{U}_{inc} \hat{V}_{inc}}{\hat{U}_{inc} + \hat{V}_{inc}} \quad \text{and}$$

$$\hat{L}_{inc} = \frac{2\hat{U}_{inc} \hat{V}_{inc}}{\hat{U}_{inc} + \hat{V}_{inc}}$$

(In EstimateS output, \hat{J}_{inc} is called the "Chao-Jaccard-Est Incidence-based" estimator and \hat{L}_{inc} is called the "Chao-Sørensen-Est Incidence-based" estimator.)

Variance Estimators

EstimateS uses a bootstrap method (Chao et al. in press) to obtain a variance estimator for the Chao's abundance-based Jaccard and Sørensen similarity index estimators. Assume that, in the data, there are a total of $D = D_1 + D_2 - D_{12}$ pairs of abundance values (see Section 3.2 for notation). These D species include observed shared species (for which both abundances are non-zero) and observed unique species (for which one of the abundances is zero).
The method is as follows: (a) Resample D pairs, with replacement, from the collection of D pairs. (b) For the Chao Jaccard or Chao Sørensen estimator, calculate an adjusted estimate (called a bootstrap estimate) based on the resampling data. (c) Repeat the procedure in (a) B times and obtain B bootstrap estimates. The bootstrap variance estimator of the adjusted estimator is the sample variance of these B estimates.

(In EstimateS output, "Chao-Jaccard-EstSD" and "Chao-Sørensen-EstSD" are the bootstrap standard deviations based on this method.)

Copyright 2005, Robert K. Colwell
March 8, 2005