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The purpose of this review is to clarify the concepts of bias, precision and accuracy as
they are commonly defined in the biostatistical literature, with our focus on the use of
these concepts in quantitatively testing the performance of point estimators
(specifically species richness estimators). We first describe the general concepts
underlying bias, precision and accuracy, and then describe a number of commonly
used unscaled and scaled performance measures of bias, precision and accuracy (e.g.
mean error, variance, standard deviation, mean square error, root mean square error,
mean absolute error, and all their scaled counterparts) which may be used to evaluate
estimator performance. We also provide mathematical formulas and a worked example
for most performance measures. Since every measure of estimator performance should
be viewed as suggestive, not prescriptive, we also mention several other performance
measures that have been used by biostatisticians or ecologists. We then outline several
guidelines of how to test the performance of species richness estimators: the detailed
description of data simulation models and resampling schemes, the use of real and
simulated data sets on as many different estimators as possible, mathematical
expressions for all estimators and performance measures, and the presentation of
results for each scaled performance measure in numerical tables with increasing levels
of sampling effort. We finish with a literature review of promising new research related
to species richness estimation, and summarize the results of 14 studies that compared
estimator performance, which confirm that with most data sets, non-parametric
estimators (mostly the Chao and jackknife estimators) perform better than other
estimators, e.g. curve models or fitting species-abundance distributions.
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The purpose of this review is to clarify the concepts of
bias, precision, and accuracy as they are commonly
defined in the biostatistical literature. The statistical
concepts of bias, precision and accuracy arise in situa-

tions involving measurement, sampling, and estimation.
We will mention the first two situations in passing, but
will mostly focus on the problem of estimation as we
intend to use these definitions to evaluate the perfor-
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mance of statistical estimation methods (also called
estimators). For example, species richness estimators
try to estimate the true or total species richness from an
incomplete sample of a biological community. We will
use species richness estimators as an example to show
how to evaluate the performance of estimators according
to their bias, precision and accuracy given some sample
data. Species richness estimators belong to the class of
point estimators which are trying to estimate the exact
value of some population parameter (e.g. species rich-
ness, or population size). Interval estimators, on the
other hand, try to estimate confidence intervals for a
parameter. We do not deal with interval estimators here,
but mention them briefly below.
Given some sample data, a point estimator will yield

some estimate of the parameter. For example, Fig. 1 shows
an estimate (open circle) that misses the true value of zero
by five units. With just a single estimate, it is impossible to
tell what the reason for this error is. However, if further
estimates (filled circles) are calculated using different
sample data, we may hypothesize the main cause for the
error of the first data point. Figure 1a illustrates the case
when systematic error is the main cause while Figure 1b
illustrates the casewhen randomerror is themain cause. In
this case, we assume that both types of error are due to the
estimator itself. Of course, systematic and random error
may have other causes related to measurement and
sampling, some of which we will mention below.

Bias

The term bias refers to several statistical issues that may
be classified as measurement, sampling, and estimation

bias (Kotz and Johnson 1982!/1988). In measurement or
sampling situations, bias is ‘‘the difference between a
population mean of the measurements or test results and
an accepted reference or true value’’ (Bainbridge 1985).
Therefore, bias leads to an under- or overestimate of the
true value. Measurement bias is mainly due to faulty
measuring devices or procedures. Therefore, measure-
ment bias usually does not disappear with increased
sampling effort, as all measurements are systematically
biased away from the true value (Kotz and Johnson
1982!/1988, West 1999, Debanne 2000). Sampling bias is
due to unrepresentative sampling of the target popula-
tion. This kind of bias does not disappear with increas-
ing sampling effort either. For example, measuring more
and more females will not give an unbiased estimate of
the male population, or vice versa. Estimation bias is
also called systematic error (Fig. 1a), and it refers to an
estimation method for which the average of repeated
estimates deviates from the true value (West 1999). Thus,
estimation bias is due to the estimator itself being biased.
However, estimation bias should decrease with increas-
ing sampling effort, as this is one of the desirable
characteristics of an estimator. For example, the ob-
served number of species is a negatively biased estimator
of the total species richness whose bias decreases with
increasing sampling effort (Fig. 2). Below, we are only
concerned with estimation bias.

Precision

Random error (Fig. 1b) is also called variability or
variance, but it is also often defined as the opposite,
namely precision, referring to the absence of random
error. Unlike bias, its magnitude is only dependent on
the estimated (or observed) values and is completely
independent of the true value. Precision is thus a
measure of ‘‘the statistical variance of an estimation
procedure’’ (West 1999) or, in sampling situations, the
‘‘spread of the data . . . attributable to the statistical
variability present in the sample’’ (Debanne 2000). In
measurement situations, precision arises from the vari-
ance produced by the measurement device or procedure.
The total variance then arises from the variability
generated by measurement error, sample variation and
estimation variance. For example, the precision of
measurements of a continuous variable depends on the
resolution of the measuring device. The resolution of a
measuring device is defined as the smallest distance over
which it is possible for a value to change (Jones 1997),
and the smaller this distance, the greater the variance the
measuring device can detect. For example, if the resolu-
tion of the measuring device is very coarse, it will each
time return exactly equal measurements of a fixed object,
and precision will be zero, but if the resolution is
sufficiently fine, precision will be greater than zero.
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Fig. 1. Examples of (a) systematic error and (b) random error.
In this hypothetical example, the true value is assumed to be
zero. Note that the values on the vertical axis are presented only
for graphical reasons.
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The significant figures of reported measurements should
reflect the precision of these measurements (Kotz and
Johnson 1982!/1988).

Accuracy

Bias and precision combine to define the performance of
an estimator. The more biased and the less precise an
estimator is, the worse its overall ability to make an
accurate point estimation. Accuracy is thus defined as
the overall distance between estimated (or observed)
values and the true value (Bainbridge 1985, Zar 1996,
Jones 1997, Krebs 1999). There are different mathema-
tical definitions of this distance (see below), and some
explicitly combine bias and precision in their mathema-
tical definitions.
Bias, precision and accuracy, as defined above, are

qualitative concepts. To quantify the performance of
estimators, we now need quantitative measures that can
tell us what the estimated bias, the estimated precision
and the estimated accuracy of an estimator is. These
estimated measures are point estimates of these qualita-
tive concepts, using data to calculate them. For example,
because the concept of accuracy incorporates the con-

cept of bias, estimating bias and accuracy (but not
precision) in a real-world situation is dependent on
actually knowing (or at least guessing at) the true value
of the population parameter (e.g. total species richness;
see section Determining total species richness below).
Below, we first introduce various bias, precision and
accuracy measures (providing formulas for each of these
performance measures in Table 1), and then illustrate
their use in Table 2 with a worked example using some of
the data presented in Fig. 2.

Unscaled performance measures

Definitions are as follows: let A be the asymptotic or
total species richness (the ‘‘true value’’ which is a
constant for any community defined in time and space,
but may be different for different communities), Ej be the
estimated species richness for the jth sample, and n be the
number of samples. In the following we assume that all
estimates have been calculated for the same community,
so that A is a constant. Later, we discuss how to scale
performance measures so that performance measures
can be used to compare performance across commu-
nities in which A is not a constant.

Bias measures
A good estimator should be unbiased, so that an even
distribution of under- and overestimates leads to an
overall bias of zero (Kotz and Johnson 1982!/1988,
Stuart and Ord 1991). Bias measures typically take into
account the difference between the estimated and the
total species richness.

1) One common bias measure called mean error (ME)
is the mean of all differences between the estimated
values and the true value (Table 1; e.g. Zelmer and Esch
1999). It indicates whether the estimator consistently
under- or overestimates the total species richness. This
measure has also been called mean deviation (MD)
(Palmer 1990, 1991), mean difference (Rosenberg et al.
1995), mean bias (Pledger 2000) or bias (Hellmann and
Fowler 1999, Foggo et al. 2003a, b).

2) Another simple bias measure is the percentage of
estimates that overestimates the total species richness A
(Palmer 1990, 1991, Walther and Morand 1998, Chiar-
ucci et al. 2001, 2003, Foggo et al. 2003b, Melo et al.
2003). In this case, an unbiased estimator should return
50% overestimates and 50% underestimates.

Precision measures
A good estimator should be precise, so that its estimates
show little variation (Kotz and Johnson 1982!/1988,
Stuart and Ord 1991). Generally, the precision of an
estimator increases linearly with the square root of the
sampling effort (Marriott 1990). In principle, any
measure of the variability of the estimates themselves
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Fig. 2. Example of the bias and precision associated with two
species richness estimators. The total species richness is assumed
to be 24 species (example taken fromWalther and Martin 2001).
As sampling effort increases, the mean of the observed species
richness (open circles) and the mean of the first-order jackknife
estimator (closed circles) are approaching the total species
richness asymptote. Standard deviations around the mean are
represented by open (observed species richness) and closed
(first-order jackknife estimator) triangles, respectively. Means
and standard deviations were calculated from 1000 estimates
derived from 1000 runs of randomized sampling order using the
program EstimateS (Colwell 2000). For example, the difference
between the mean of the first-order jackknife estimator and the
total species richness is a measure of the bias of the first-order
jackknife estimator, and the standard deviation of the first-order
jackknife estimator is a measure of the precision of the first-
order jackknife estimator.

ECOGRAPHY 28:6 (2005) 817



can be used as a precision measure. However, typically,
one of the following measures is used.

1) The most common precision measure is the vari-
ance (Table 1; e.g. Hellmann and Fowler 1999, Foggo et

al. 2003a, b). The variance is useful as it can be
combined with the mean error to measure accuracy
(see below).

2) Another precision measure is the standard devia-

tion (SD) (Table 1). For example, Baltanás’
(1992) calculated the standard deviation of his bias
measure PAR (see below), and Brose et al. (2003) and

Melo et al. (2003) used a similar approach. Closely
related to the variance, the advantage of the standard
deviation is that it is on the same scale as the mean and is
thus directly comparable.

3) A very simple precision measure is the range
(Tietjen 1986). However, it is of essentially no use in
this context because it increases with sample size (Sokal

and Rohlf 1995). On the other hand, the inter-quartile or
semi-interquartile range (the difference between the 25
and 75% quartile) is less sensitive to sample size and may

thus be used as a more robust precision measure (Sokal
and Rohlf 1995, Gould and Pollock 1997, Peterson and
Slade 1998).

It is important to note that the calculation of precision

measures does not require knowledge of the true value
(in this case, the total species richness A). Therefore,
precision measures alone cannot evaluate estimator

Table 1. Performance measures of bias, precision, and accuracy. Full names for the abbreviations of performance measures are
given in the text. A is the asymptotic or total species richness, Ej is the estimated species richness for the jth sample, and n is the
number of samples. S denotes the summation formula.

Measure Bias Precision Accuracy

Unscaled ME"//

1

n
an

j"1(Ej#A) Var1)"//

1

n
an

j"1(Ej#Ē)2 MSE"//

1

n
an

j"1(Ej#A)2

SD"//

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n
an

j"1(Ej#Ē)2
s

RMSE"//

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n
an

j"1(Ej#A)2
s

MAE"//

1

n
an

j"1jEj#Aj

Scaled SME"//

1

An
an

j"1(Ej#A) CV"//100SD=Ē SMSE"//

1

A2n
an

j"1(Ej#A)2

PAR"//

1

n
an

j"1(100Ej=A) SRMSE"//

1

A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n
an

j"1(Ej#A)2
s

Absolute values jSMEj or jPARj SMAE"//

1

An
an

j"1jEj#Aj

1) Note that we here use the biased estimate of variance because when calculating MSE, the bias in this estimate is exactly balanced
by the bias generated using the bias measure provided. If calculating variance estimates for other purposes, we recommend using the

unbiased variance estimate Var"//

1

n-1
an

j"1(Ej#Ē)2:

Table 2. A worked example illustrating the calculation of
performance measures for two estimators (the observed species
richness and the first-order jackknife estimator presented in Fig.
2). For ease of calculation, we picked only the first 10 estimates
produced during the first 10 runs for each estimator at sample
30 (the highest sampling effort depicted in Fig. 2). The estimates
are (presented in ascending order) 18, 19, 20, 20, 20, 20, 20, 20,
21, and 23 for observed species richness and 21.01, 21.59, 22.21,
23.53, 23.87, 23.96, 24.06, 24.69, 24.84, and 25.42 for the first-
order jackknife estimator. The resulting values of the bias,
precision, and accuracy measures, both unscaled and scaled (see
Table 1), are presented below.

Concept Measure Observed
species
richness

First-order
jackknife

Unscaled measures
Bias ME #/3.900 #/0.482
Precision Var 1.490 1.907

SD 1.221 1.381
Accuracy MSE 16.700 2.139

RMSE 4.086 1.463
MAE 3.900 1.084

Scaled measures
Bias SME #/0.163 #/0.020

PAR 83.750 97.992
Precision CV 6.073 5.872
Accuracy SMSE 0.029 0.004

SRMSE 0.170 0.061
SMAE 0.163 0.045
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performance. For example, Chazdon et al. (1998) and
Longino et al. (2002) suggested that an estimator should
remain stable as sample size increases. However, this is
just another way of suggesting to measure the precision
of the estimates. Therefore, while ‘‘stability’’ is a quality
an estimator should have with increasing sample size, it
alone does not guarantee the accuracy of the estimator
as it does not consider bias.

Accuracy measures
A good estimator should be accurate, so that its
estimates are as close to the true value as possible
(Kotz and Johnson 1982!/1988, Stuart and Ord 1991).
Like bias measures, accuracy measures typically take
into account the difference between the estimated and
the total species richness, but then square this difference
or take the absolute value of it to eliminate the direction
of the difference. Thus, only the magnitude of the
difference is taken into account.
1) A common accuracy measure called mean square

error (MSE) is the mean of the squared differences
(Table 1; e.g. Burkholder 1978, Kotz and Johnson 1982!/

1988, Marriott 1990, Hellmann and Fowler 1999, Foggo
et al. 2003a, b). It indicates how close the estimator is to
the true value. This measure has also been called mean
squared error (Tietjen 1986, Walsh 1997, Zelmer and
Esch 1999) or mean square deviation (MSD) (Palmer
1990, 1991). This measure incorporates concepts of both
bias and precision as the MSE is actually equal to the
variance of the estimates plus the squared mean error (a
proof of MSE"/variance$/bias2"/variance$/ME2 can,
for example, be found on p. 303 in Casella and Berger
1990). Small variance ("/ high precision) and little bias
thus lead to a highly accurate estimator. On the other
hand, an inaccurate estimator may be due to high
variance and/or large bias. Since the MSE squares all
differences, this measure does not have the same scale as
the original measurement.
2) To return to the original scale, we can take the

square root of the MSE (which is the same basic
operation as turning the variance into the standard
deviation). This mathematical operation yields the
second accuracy measure called root mean square error
(RMSE) (Table 1; e.g. Rosenberg et al. 1995, Stark
1997!/2002, Zelmer and Esch 1999). Since both MSE
and RMSE are calculated using squared differences, they
tend to be dominated by outlying estimates far away
from the true value.
3) To avoid this potential problem of outlying

estimates, one may take the absolute value of the
difference between the estimated and total species
richness as a measure of accuracy. One can then take
the mean (called mean absolute error (MAE), see Table
1; e.g. Burkholder 1978, Kotz and Johnson 1982!/1988)
or the median of all absolute differences (called median
absolute deviation (MAD), see Norris and Pollock 1996,

1998, Pledger 2000) yielding more robust (i.e. less
sensitive to outliers) measures of accuracy.

4) A simple accuracy measure is the percentage of
estimates falling within the range A9/([r*A]/100) which
translates into a r% range around the total species
richness asymptote A (Baltanás 1992, Walther and
Morand 1998).

Scaled performance measures

One of the problems with studies evaluating estimator
performance is that their results are often incomparable
to other studies because the unscaled performance
measures introduced above have been calculated for a
specific population or community. Since these measures
are not scaled according to the species richness of the
community, it is invalid to compare results from com-
munities with differing species richness. To make results
comparable, all the above measures need to be scaled by
dividing through the total species richness A. For
example, if estimated and total species richness are 9
and 10, respectively, then the root mean square error is 1.
If estimated and total species richness are 90 and 100,
however, the root mean square error is 10. Although the
root mean square error differs numerically, both esti-
mates are 10% less than the total species richness, and
therefore should be considered equally accurate. There-
fore, scaled performance measures should be used
whenever results from communities with differing species
richness are compared. Later we discuss how scaled
performance measures calculated from different com-
munities may be combined to give an overall perfor-
mance measure.

Bias measures
1) Scaling the ME by dividing through the total species
richness A yields the scaled mean error (SME) (Table 1).
This measure has also been called mean relative error
(MRE) (Chiarucci et al. 2001, 2003), relative bias (Otis et
al. 1978, Wagner and Wildi 2002), mean bias (Brose et
al. 2003), or bias (Walther and Morand 1998, Walther
and Martin 2001).

2) The SME can easily be transformed into a second
scaled bias measure called percent of actual richness
(PAR) (Table 1, e.g. Baltanás 1992). This measure has
also been called percent of true or total richness (PTR)
(Brose 2002, Herzog et al. 2002). These two measures are
related as PAR"/100*SME$/100.

3) One can also take the absolute value of the two bias
measures above to get a directionless measure of bias
(e.g. Rosenberg et al. 1995). This operation is useful if
only the magnitude and not the direction of the bias is of
interest, but note that this is not strictly abiding to the
definition of bias anymore resulting in yet another
performance measure altogether.
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Precision measures
1) The most commonly used measure is the coefficient of
variation (CV) which provides a scaled measure of
precision for values with different means (Table 1; e.g.
Cam et al. 2002). It is simply the standard deviation
expressed as a percentage of the mean (Sokal and Rohlf
1995).

Accuracy measures
1) Scaling the MSE by dividing through the squared
total species richness A yields the scaled mean square
error (SMSE) (Table 1). This measure has also been
called mean inaccuracy (Brose et al. 2003), mean relative
variance (Wagner and Wildi 2002), mean square relative
error (MSRE) (Chiarucci et al. 2003), mean square
proportional deviation (MSPD) (Palmer 1990, 1991),
mean square relative deviation (MSRD) (Chiarucci et al.
2001), or deviation (Walther and Morand 1998). Un-
fortunately, this measure was also called precision
(Walther and Martin 2001) which resulted from a
somewhat confusing use of the term by Zar (1996,
p. 18) who defined accuracy as ‘‘the precision of a
sample statistic’’. Although he stated that ‘‘the precision
of a sample statistic, as defined here, should not be
confused with the precision of a measurement’’, Walther
and Martin (2001) proceeded to use the term precision
instead of accuracy. In the future, we recommend to use
the term accuracy instead of ‘‘precision of a sample
statistic’’ to avoid confusion.
2) Scaling the RMSE by dividing through the total

species richness A yields the scaled root mean square
error (SRMSE) (Table 1).
3) Scaling the MAE or the MAD by dividing through

the total species richness A yields the scaled mean
absolute error (SMAE) (Table 1) or the scaled median
absolute deviation (SMAD).

Evaluating performance over many communities

Often we would like to evaluate an estimator’s perfor-
mance over a number of different communities with
different species richnesses. To do this, we typically seek
an average of the performance measures of interest over
the different communities to produce a single value for
each performance measure. However, a few points
should be noted in this case.
Most importantly, scaled performance measures

should always be used as unscaled measures will give
higher weights to more species-rich communities (see
section Scaled performance measures above). For many
performance measures (e.g. SME and SMSE), the value
of the measure calculated using combined data from
more than one community corresponds to the weighted
average of the measure calculated for each community
separately (with the weights being equal to the sample

size for each community). However, this is not true for
all performance measures (notably variance and CV),
and so care must be taken using this approach. For
example, the variance of estimates derived from two
separate communities may be 0.5 and 1.5, but the
variance of estimates derived from the combined data
may be much greater than the average of 0.5 and 1.5,
depending on the difference between the means of the
communities. The combined variance indicates the over-
all variation between the two communities rather than
the average precision of the estimates within one
community. This problem cannot be avoided by scaling,
e.g. by using the coefficient of variation. Again, the CV
of the estimates derived from combined data may be
much greater than the average of the CVs derived from
each separate community.

Therefore, we recommend that performance measures
are calculated for each community separately and then
combined as averages after the calculation. As well as
avoiding the necessity of figuring out the validity of a
combined data approach, calculating the measures for
each community separately has a couple of additional
advantages. First, it allows one to see the different
contributions that each community makes towards the
overall performance of an estimator, facilitating the
identification of any unusual occurrences or between-
community patterns in estimator performance. Second,
one can choose whether a weighted average (each
community estimate is weighed according to the number
of samples used to calculate it) or a simple average (each
community estimate is weighed equally) is more appro-
priate. The latter option may be reasonable if sample
sizes vary widely between communities. For example, a
small boreal forest will require less sampling effort than
a large tropical forest to get a reliable idea of its species
richness, but we may wish to consider both communities
equally important when evaluating overall estimator
performance.

Other performance measures

Measures of estimator performance should be viewed as
suggestive, not prescriptive. Each measure should be
adopted to explore an estimator’s properties, but not be
seen as the ultimate judgment tool, given that there is a
virtually infinite number of ways of defining estimator
performance in addition to the onesmentioned above. For
example, another suggestion was to determine the smal-
lest sub-sample size needed to estimate the total species
richness (Melo and Froehlich 2001) while Pitman’s close-
ness measure calculates the frequency with which one
estimator is closer in absolute value to
the true value than another estimator (Mood et al.
1974). Yet another suggestion is to test the ability of
estimators to reliably rank communities by calculating the
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regression between estimated and total species richness
(Palmer 1990, 1991, Baltanás 1992, Brose 2002).However,
since estimated species richness changes with sampling
effort, this approach may be misleading unless estimated
species richness is calculated for various levels of sampling
effort (Walther and Morand 1998). Brose et al. (2003)
recently used r2-values of the regression as a precision
measure, and the difference between the observed slope of
the regression and the expected slope of one forced
through the origin as a bias measure.
The statistical theory of point estimation has intro-

duced several other concepts of how to evaluate
estimator performance (Burkholder 1978, Kotz and
Johnson 1982!/1988, Lehmann 1983, Tietjen 1986,
Marriott 1990, Stuart and Ord 1991). For example, a
more efficient estimator has a smaller variance than
another, and a consistent estimator converges on the true
value as sampling effort approaches infinity. Consistency
should therefore be a property of every estimator,
because an estimator that yields a biased estimate even
when given all possible data is surely not adequate. Such
asymptotic (i.e. large-sample, or limiting) properties of
an estimator do not make them irrelevant to ‘‘real-
world’’ biological situations that usually involve small
sample sizes. Whenever direct calculation of bias, preci-
sion, and accuracy is complex or infeasible, asymptotics
can yield useful numerical approximations of bias,
precision and accuracy for a given finite sample size.
Asymptotic properties therefore do not define optim-
ality, but rather, approximate the quantities that do
define optimality. Therefore, if the sample size is large
enough, good probabilistic approximations may be
drawn for the given situation, and in particular, these
approximations can be used to estimate bias, precision
and accuracy.
Of course, point estimation of species richness is only

one side of the coin, and interval estimation is also
important to establish confidence intervals for a para-
meter. Therefore, another important criterion for com-
paring estimators is the coverage probability of a
confidence interval which is the percentage of confidence
intervals that cover the true value over many resampled
data sets, i.e. the specified probability that the estimate
will fall within a pre-defined lower and upper bound
around the true value.

Determining total species richness

Below, we will outline how to test the performance of
various species richness estimators. One prerequisite of
this approach is to somehow determine the true value of
total species richness so that we can calculate the bias
and accuracy of each estimate returned by the estimator
(a quite different approach which is not dependent on
knowing the total species richness is using data-based

evaluation procedures and model selection to estimate
total species richness; see section Promising new research
related to species richness estimation below).

To determine total species richness from real data sets,
sampling must be exhaustive. Of course, asserting that a
biological community or population has been sampled
exhaustively is very difficult. However, as sampling effort
increases, the number of singletons (i.e. single observa-
tions of a species, for details see Colwell and Coddington
1994) typically decreases once a sufficient number of
species has been found (in the beginning of sampling, the
number of singletons may actually increase). As long as
singletons persist in the data, there is a good chance that
the total species richness has not been reached. Once
singletons disappear after continued sampling, one may
assume that the total species richness has been reached
(which, admittedly, rarely happens in most real data
collections, e.g. Novotny and Basset 2000, Mao and
Colwell 2005, but see Walther and Morand 1998 and
Walther and Martin 2001 for such examples). The basic
idea behind using singletons is that the probability of
finding a new species in an additional observation is
approximately the proportion of singletons remaining to
be observed (see Good 1953 and Chao and Lee 1992 for
details).

A closely related way of checking the data set is to plot
a randomized species accumulation curve (also called a
sample-based taxon re-sampling curve, see Gotelli and
Colwell 2001). As long as singletons are present in the
data set, this curve will be rising (Walther 1997).
However, a curve with a clear horizontal asymptote
indicates that the total species richness has been reached
(for an illustrated example, see Walther and Martin
2001). If the total species richness cannot be ascertained
in this way, one should at least state how accurate the
estimate of total species richness is (e.g. by stating an
interval of possible richness values; see various examples
in Table 3).

If such well-sampled real datasets are not available,
another approach is of course to pre-set total species
richness in some kind of population model that simu-
lates data many thousands of times, and then to compute
bias, precision and accuracy measures for various
estimators using these data (see various examples in
Table 3). To illustrate how to use real or simulated data
to test species richness estimators, we below outline some
of the most important points to keep in mind when
testing the performance of species richness estimators.

Testing the performance of species richness
estimators

We will now use the bias, precision and accuracy
measures introduced above to show how to evaluate
the performance of an estimator, using a worked
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Table 3. A list of studies comparing estimator performance (first column). The second column indicates the study taxon and
whether real (R) or simulated (S) data were analysed. The third column gives the accuracy, bias and precision measure used in the
analyses; unscaled measures: 1)mean error, 2)standard deviation, 3)mean square error, 4)root mean square error; scaled measures:
5)scaled mean error, 6)percent of actual richness; 7)scaled mean square error (see Table 1); regression measures: 8)difference between
the observed slope of the regression and the expected slope of one forced through the origin, 9)r2-values of the regression (see Brose
et al. 2003). The fourth column ranks the estimators’ performance according to the respective measure with the first estimator being
the best. Abbreviations of estimators are mostly taken directly from the references and refer to the following estimators: the non-
parametric estimators called ACE, bootstrap (Boot), Chao1, Chao2, ICE, the first, second, third, fourth, fifth and kth-order
jackknifes (Jack1, Jack2, Jack3, Jack4, Jack5, Jack-k) and the interpolated jackknife (Jack-int); the species-abundance distribution
fitting methods called Preston’s log-normal, Poisson’s log-normal, and Cohen’s truncated log-normal; the non-asymptotic curve
models called log-linear (Log-Lin) ‘‘Gleason’’ and log-log (Log-Log) ‘‘Arrhenius’’ model (also called exponential and power model,
respectively); and the asymptotic curve models called Beta-P, collector’s curve, finite-area, Karakassis’ infinite model, modified
logarithmic, modified negative exponential, modified power function, negative exponential, rational function and Weibull (see
Palmer 1990, Baltanás 1992, Walther and Martin 2001, Petersen and Meier 2003, Brose et al. 2003, Foggo et al. 2003b or the specific
studies listed below for definitions and references). Another asymptotic curve model is the Michaelis-Menten curve model that can
be fitted in four different ways (MM-least-squares, MM-Mean, MM-Monod, MM-Runs). The observed species richness (Sobs) is
printed in bold because its performance is a baseline against which the performance of the other estimators can be compared. The
studies using real data sets determined the total species richness in the following ways: comprehensive floristic list (Palmer 1990,
1991, Chiarucci et al. 2001, 2003); randomized species accumulation curve had reached asymptote (Walther and Morand 1998,
Foggo et al. 2003b); no singletons or doubletons in the data set, therefore the randomized species accumulation curve had reached
asymptote (Walther and Martin 2001); total species richness was measured as the arithmetic mean of the estimates returned from
four estimators calculated using the entire data set (Brose 2002); comprehensive avian list (Herzog et al. 2002); comprehensive faunal
sampling and expert knowledge (best ‘‘guesstimate’’) (Petersen and Meier 2003, Petersen et al. 2003). Several comparative studies
(Gimaret-Carpentier et al. 1998, Keating et al. 1998, Hellmann and Fowler 1999, Melo and Froehlich 2001, Wagner and Wildi 2002,
Foggo et al. 2003a, Melo et al. 2003, Rosenzweig et al. 2003, Cao et al. 2004) were not included here because most of their results
were presented in figures, not tables, which made assigning ranks difficult or impossible. Note that further reviews (Brose and
Martinez 2004, O’Hara 2005) were not included here because they were at the proof-stage.

Studies Taxon Performance
measure

Estimators listed according to performance

Palmer 1990, 1991 Plants (R) Bias1) Jack2, Jack1, Log-Lin, Boot, Preston log-normal, Sobs,
MM-Monod, Log-Log

Plants (R) Accuracy3) Jack1, Jack2, Boot, Log-Lin, Preston log-normal,
MM-Monod, Sobs, Log-Log

Plants (R) Accuracy7) Jack1, Log-Lin, Jack2, Boot, Preston log-normal,
Sobs/MM-Monod, Log-Log

Baltanás 1992 Invertebrates (S) Bias6) Jack1, Cohen’s truncated log-normal, modified power function,
Sobs

Invertebrates (S) Precision2) Cohen’s truncated log-normal, Jack1, modified power function,
Sobs

Poulin 1998 Parasites (S) Bias6) Jack1, Chao2, Boot, Sobs
Walther and
Morand 1998

Parasites (S) Accuracy7) Jack1, Boot, Chao1, Chao2, Jack2, MM-Mean, MM-Runs,
Sobs

Parasites (S) Bias5) Chao1, Chao2, Jack1, Boot, Jack2, MM-Runs, MM-Mean,
Sobs

Parasites (R) Accuracy7) Chao2, Jack1, Chao1, MM-Mean, Jack2, Boot, Sobs,
MMRuns

Parasites (R) Bias5) Chao2, Jack1, Chao1, MM-Mean, Jack2, Boot, MM-Runs,
Sobs

Zelmer and Esch 1999 Parasites (S) Accuracy6) Boot, Jack-k, Sobs
Parasites (S) Bias3) Jack-k, Boot, Sobs

Chiarucci et al. 2001 Plants (R) Accuracy7) Jack1, Jack2, MM-Mean, bias-corrected Chao2, Boot, Sobs
Plants (R) Bias5) Jack2, Jack1, bias-corrected Chao2, MM-Mean, Boot, Sobs

Walther and
Martin 2001

Birds (R) Accuracy7) Chao2, Chao1, Jack2, Jack1, rational function, MM-least-
squares, modified power function, MM-Runs, MM-Mean,
ICE, ACE, Boot, Weibull, Beta-P, Sobs, modified negative
exponential, finite-area, negative exponential, modified
logarithmic, collector’s curve

Birds (R) Bias5) Chao2, Jack1, Chao1, modified power function, Jack2, rational
function, MM-least-squares, ICE, MM-Runs, ACE, MM-
Mean, Boot, beta-P, Weibull, Sobs, modified logarithmic,
modified negative exponential, finite-area, negative
exponential, collector’s curve

Brose 2002 Beetles (R) Bias6) Chao1, Jack2, Jack1, Boot, Sobs
Beetles (R) Precision2) Chao1, Sobs, Boot, Jack1, Jack2

Herzog et al. 2002 Birds (S) Bias6) x -species-list method: MM-Runs, MM-Mean, Jack2, Chao2,
Chao1, ICE, ACE, Jack1, Boot, Sobs

Birds (R) Bias6) x -species-list method: MM-Runs, Jack2, MM-Mean, Chao2,
ICE, Jack1, ACE, Chao1, Boot, Sobs

Brose et al. 2003 Species (S) Bias8) Jack5, Jack4, Jack-k, Jack3"/Jack-int, Chao2, Jack2, Jack1,
ICE,
MM-least-squares, Sobs, negative exponential

Species (S) Precision9) Jack4, Jack-k, Jack3"/Jack-int, Jack2, Jack5, Chao2, ICE,
Jack1, Sobs, negative exponential, MM-least-squares
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example (Table 2). Remember that a point estimator of a
parameter (e.g. total species richness) needs to be both
unbiased and precise to be accurate. In Fig. 2, a typical
species richness accumulation curve (or curve of ob-
served species richness) is approaching the total species
richness asymptote of 24 species as sampling effort
increases. The observed species richness is inevitably a
negatively biased estimator of species richness. To do
better, various species richness estimators have been
developed (e.g. the first-order jackknife estimator shown
in Fig. 2).
These estimators try to estimate the total species

richness of a defined biological community from an
incomplete sample of this community. Recent reviews list
numerous species richness estimators (Bunge and Fitz-
patrick 1993, Colwell and Coddington 1994, Walther et
al. 1995, Flather 1996, Nichols and Conroy 1996,
Stanley and Burnham 1998, Boulinier et al. 1998,
Chazdon et al. 1998, Keating et al. 1998, Colwell 2000,
Chao 2001, 2005, Walther and Martin 2001, Hughes et
al. 2001, Williams et al. 2001, Bohannan and Hughes
2003, see also reviews of species diversity estimators by
Lande 1996, Mouillot and Lepêtre 1999 and Hubálek
2000), but the methodological differences between these
estimators are of no concern here. All that is important
in this context is that a species richness estimator will,
given various data sets, yield various estimates of the
total species richness. We want to test how biased,
precise and accurate these estimates are, and we want
to be able to compare the estimates of different
estimators to evaluate their respective performances.
Note also that, in this context, it does not matter what

purpose the estimator was designed for originally. For
example, the estimators Chao1, Chao2, ICE and ACE
were originally designed to estimate a lower bound for
species richness, while the jackknife estimators were
originally designed as bias reduction methods (see Table
3 for references). Each estimator has been developed to
work best under the assumptions defined by a specific
population model (which is the model that defines the
population structure resulting from various community
parameters, i.e. total species richness, species-abundance
distribution, etc.), but may of course also be tested under
differing population models, which is what biostatisti-
cians or ecologists want to do. In other words, an
estimator is just a function of the data, and whether it is

biased, precise or accurate depends on what the
researcher aims to estimate. Therefore, if a researcher
decides to use a ‘‘lower-bound’’ or ‘‘bias-reduction’’
estimator to estimate total species richness, the perfor-
mance of this estimator may be evaluated and compared
to the performance of any other estimator. Incidentally,
Chao and Tsay (1998) and Chao et al. (2005) proved that
Chao1, Chao2, ICE and ACE are legitimate estimators
of total species richness under some feasible population
models. It is thus statistically no problem to regard these
four estimators as estimators of total species richness
given certain assumptions.

In some circumstances, a given estimator may have an
attached statistical theory so that measures of bias,
precision, and accuracy can be estimated even from a
single data set (e.g. the sample mean). However, if the
statistical theory for an estimator has not been devel-
oped, is not readily available, or the working assump-
tions do not hold, we may attempt to estimate values for
bias, precision, and accuracy measures by generating
large datasets and sampling them repeatedly. Many
resampling schemes exist, with a large literature attached
to their theory (e.g. Efron and Gong 1983, Efron and
Tibshirani 1986, Manly 1997, Davison and Hinkley
1997). Resampling must be done from some empirical
distribution (defined by the parameters of some popula-
tion model which is itself an estimator of the true
underlying distribution, e.g. the parameters of a real
biological community).

In this context, it is important to note that resampling
can be done with or without replacement. This crucial
distinction has important implications on whether the
generated data are independent of one another and are
similar to real data. They are independent of one
another if we resample with replacement, but generally
not when we resample without replacement, except in
those cases when we resample a small enough fraction of
the data so that we can confidently ignore that the
resampled data are dependent on one another. More-
over, over large sample sizes, the generated data are
similar to real data only if we resample with replace-
ment. Therefore, resampling without replacement
complicates statistical matters considerably and
should generally not be recommended. However, we
cannot make a definite recommendation here, as the
decision ‘‘with or without replacement’’ depends on the

Table 3. Continued.

Studies Taxon Performance
measure

Estimators listed according to performance

Chiarucci et al. 2003 Plants (R) Accuracy7) Jack1, Jack2, bias-corrected Chao2, Boot, Sobs
Plants (R) Bias5) Jack1, Jack2, bias-corrected Chao2, Boot, Sobs

Foggo et al. 2003b Invertebrates Bias1) Chao2, ICE, Chao1, ACE, Boot, Jack2, Karakassis’ infinite
model, Jack1, Sobs

Petersen et al. 2003 Diptera Bias6) Jack2, Jack1, ICE, MM-Mean, Chao2, Boot, Chao1, ACE,
Sobs

Petersen and Meier 2003 Diptera Bias6) Poisson log-normal, Chao1, ACE, Preston log-normal, Sobs

ECOGRAPHY 28:6 (2005) 823



researcher’s goals defined by the study’s context. This
decision is not a matter of statistical principle but a
question of statistical modelling, and both options are
feasible. We therefore recommend that researchers refer
to standard references (see above) or consult with a
biostatistician on this issue.
Because any such data simulation models and resam-

pling schemes have certain assumptions, these assump-
tions should be clearly described at the outset of any
study. For example, researchers should be aware of the
‘‘black-box’’ properties of the programs they are using.
One popular program is EstimateS (Colwell 2000), but
most of its users did not state whether they used
sampling with or without replacement. Also, EstimateS
only returns summary statistics derived from the calcu-
lation of many individual data points, making the
application of some formulas given in Table 1 impos-
sible. These two important points were missed by many
authors, including the senior author of this review.
Researchers should also use real datasets in addition

to simulated datasets whenever possible (e.g. Walther
and Morand 1998). Simulated data allow for testing of
the effects of changing community parameters (i.e. total
species richness, sample size, aggregation of individuals
within samples) as well as the generation of bodies of
data large enough for statistical analysis. However,
simulated datasets may miss real patterns of community
structure (Palmer 1990, 1991). Therefore, real datasets
should also be tested, but only if their total species
richness is known with some certainty (see section
Determining total species richness above).
Moreover, researchers should compare as many dif-

ferent estimators as possible in their studies. Several
comprehensive reviews of estimators were cited above,
and several computer programs are also available (Ross
1987, Ludwig and Reynolds 1988, Rexstad and
Burnham 1991, Izsák 1997, McAleece et al. 1997, Krebs
1999, White and Burnham 1999, Hines et al. 1999,
Colwell 2000, Thomas 2000, Gotelli and Entsminger
2001, Turner et al. 2001, Anon. 2002). In addition, the
performance of the ‘‘observed species richness’’ estima-
tor should always be included in the results as a baseline
against which the performance of the other estimators
can be compared.
Furthermore, a mathematical expression or an un-

ambiguous source for all estimators (e.g. Colwell 2000)
and performance measures (e.g. Table 1) should always
be given. Unfortunately, many studies lack such state-
ments, and this lack of information will lead to confu-
sion and incomparable results.
Also, the scaled performance measures resulting from

the study should, whenever possible, be presented in
tables and not in figures because not knowing the actual
numbers makes it difficult or impossible to assign
performance ranks to estimators or compare their
performance across studies.

Finally, resampling should be done for various
increasing levels of sampling effort, with the goal of
assessing each estimator’s performance with increasing
sampling effort. For example, the data displayed in Fig.
2 were derived by sampling a bird community by means
of 20-min point counts with fixed radius during which
the number of individuals of each species was recorded
(see Martin et al. 1995 for details). Each point count is
considered a sample, and the entire set of point counts is
considered the data set. To calculate many estimates for
each level of sampling effort, the sample order is
randomized many times over. For each new random
combination of samples, all estimators are used to
calculate estimates of total species richness. Once this
has been done many times (e.g. 1000 times), the resulting
1000 estimates can then be used to calculate the bias,
precision, and accuracy of each estimator at each level of
sampling effort. In Fig. 2, the mean and standard
deviation of the 1000 estimates for both the observed
and the first-order jackknife estimator are given.

The difference between the mean of the estimates and
the total species richness is then the bias of each
estimator at each level of sampling effort, and the
standard deviation of the estimates yields the precision
of each estimator at each level of sampling effort. A table
presenting the bias, precision and accuracy of each
estimator at each level of sampling effort is then the
most basic and complete presentation of each estimator’s
performance. We present a simple example in Table 2
where we calculate most of the performance measures
presented in Table 1 for 10 estimates produced by the
two estimators presented in Fig. 2 at constant sampling
effort.

Rather than presenting all performance measures for
each level of sampling in a very large table, we may want
to summarize the information in such a table to get some
overall measure of performance. While such an overall
performance measure may not be a truly statistical
property of an estimator (as the properties of an
estimator change with sampling effort, and of course
depend on the data), we may still want to summarize the
information in such a table which is a valid procedure as
long as we clearly describe how these summary perfor-
mance measures are calculated. For example, the most
common approach would be to average each perfor-
mance measure over all levels of sampling effort to get an
all-encompassing performance measure (see section
Evaluating performance over many communities above).

However, to ecologists, the performance of species
richness estimators may not be of interest once the
observed species richness is very close to the asymptote.
Therefore, such ‘‘late’’ samples may not be very in-
formative when testing estimators for the practical
purposes of ecological surveys. However, very ‘‘early’’
samples may also not be very informative simply because
sampling effort is still so low (e.g. below 5 samples) that

824 ECOGRAPHY 28:6 (2005)



no estimator can be expected to perform well. Therefore,
Walther and Morand (1998) and Walther and Martin
(2001) argued that estimator performance should be
tested at ‘‘intermediate’’ sampling effort when observed
species richness is still increasing but nowhere near the
asymptote. No matter what cut-off points for sampling
effort are used, levels of sampling effort used for
performance evaluation should be clearly stated by
researchers.

Literature review of comparative studies of species
richness estimator performance

We stated above that comparative studies of estimator
performance should carefully describe the details of data
simulation models and resampling schemes, also use real
datasets whenever possible, compare as many different
estimators as possible (including the ‘‘observed species
richness’’), give or clearly reference mathematical ex-
pressions for all estimators and performance measures,
and present results for each scaled performance measure
in numerical tables with increasing levels of sampling
effort.
Unfortunately, only relatively few studies have so far

kept to these criteria. Many studies of estimator
performance did not use both real and simulated
datasets (examples in Table 3), used very few estimators
(examples in Walther and Martin 2001), and presented
results mostly in figures (examples in Table 3). Never-
theless, a literature review of those studies that we knew
about reveals some interesting overall trends (Table 3;
see also Cao et al. 2004). As expected, the observed
species richness is almost always one of the worst
estimators, further supporting the notion that the use
of almost any estimator is preferable to the simple
species count (unless sampling has been exhaustive). In
most cases, non-parametric estimators (mostly the Chao
and jackknife estimators) perform better than the other
estimators. Even though fitting species-abundance dis-
tributions performed well in two out of three studies in
which they were tested, their overall performance cannot
be evaluated at present until they are included in more
comparative studies (also note the problems associated
with their actual application mentioned in Colwell and
Coddington 1994). Curve-fitting models, on the other
hand, have been extensively tested and usually perform
worse than non-parametric estimators, with a few
notable exceptions. The log-linear model performed
quite well in Palmer’s (1990, 1991) study when used
with limited sample sizes, but it cannot be used to
extrapolate total species richness as it has no asymptote.
The modified power function and the rational function
performed reasonably well in one study (Walther and
Martin 2001) and perhaps deserve further consideration.
Rosenzweig et al. (2003) even found that curve models

far outperformed two non-parametric estimators (ICE
and kth-order jackknife), but their study was based on
the analysis of just one real regional data set of
butterflies. Somewhat surprisingly, the Michaelis-Men-
ten curve model performed best in one study (Herzog
et al. 2002), which is contrary to its usual mediocre
performance. However, Herzog et al. (2002) manipulated
the data with the so-called x-species-list method prior to
analysis which may explain their somewhat contra-
dictory results. The usually superior performance of
non-parametric estimators may be due to the fact that
they, unlike curve models, have been developed from
underlying models of detection probability (Cam et al.
2002).

To further summarize the results of our review, we
calculated overall bias and overall accuracy using the
information contained in Table 3. However, just as there
are many different ways of evaluating bias, precision and
accuracy, there are obviously various ways of summariz-
ing the information contained in Table 3, and the
particular analysis presented in Table 4 is just one of
many possible ones (and we encourage researchers to do
their own analysis). Nevertheless, our particular analysis
further corroborates that the Chao and jackknife
estimators usually perform better than the other meth-
ods, and that the observed species richness is the worst
estimator. Therefore, our simple numerical analysis
supports the overall qualitative impression of Table 3
presented above.

Of course, even the Chao and jackknife estimators
may sometimes perform badly, and the reasons for
varying performance are dependent on those variables
which change the structure of the data that is used by the
estimators to calculate their estimates: they are, specifi-
cally, 1) total species richness, 2) sample size, and 3)
variables that change the aggregation of individuals
within samples, e.g. the species-abundance distribution
or the sampling protocol. In other words, while sample
size and total species richness determine the actual size
of the two-dimensional species-versus-sample data ma-
trix, the species-abundance distribution and the sam-
pling protocol determine how individuals are distributed
within the individual samples, and this in return
influences estimator performance. Therefore, there are
no estimators that are suitable for all situations, or that
are especially suitable for particular taxa, e.g. spiders or
birds, unless their performance is tied to the species-
abundance distribution of that taxon and the actual
sampling protocol used for that taxon.

Promising new research related to species richness
estimation

The development and testing of species richness estima-
tors is an exciting and rapidly advancing field with
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several publications coming out every month. It is
therefore impossible to summarize all present and
possible future developments, and we ask for forgiveness
if we left out some promising research that we did not
know about.
As mentioned above, a different approach which is not

dependent on knowing the total species richness is using
data-based evaluation procedures and model selection to
estimate total species richness. This approach uses either
goodness-of-fit or model selection criteria. Goodness-of-
fit criteria (e.g. Samu and Lövei 1995, Flather 1996,
Winklehner et al. 1997) essentially assume that the
estimator which fits the data best will also yield the
best estimate. However, the use of goodness-of-fit
criteria may easily lead to over-fitted models because
‘‘increasingly better fits can often be achieved by using
models with more and more parameters’’ (Burnham and
Anderson 1998, p. 27). Therefore, other model selection
criteria have been developed, of which there are many
(e.g. Stanley and Burnham 1998). For example, like-
lihood ratio tests and discriminant function procedures
have been used to choose between various jackknife
estimators (e.g. Otis et al. 1978, Rexstad and Burnham
1991, Norris and Pollock 1996, Boulinier et al. 1998).
However, much recent research has shown that model
selection based on Kullback-Leibler information theory
and maximum likelihood approaches is superior in
choosing and weighting among several candidate models
(Burnham and Anderson 1998, 2001, Anderson et al.
2000). These data-based model selection methods are
based on the principle of parsimony ‘‘in which the data
help ‘select’ the model to be used for inference’’
(Burnham and Anderson 1998, p. 27). A good example

of this approach is provided in Burnham and Anderson
(1998, pp. 71!/72) where they re-analyse Flather’s (1996)
species-accumulation curve models. Model selection
methods are especially useful when there is no extra-
polation involved, e.g. the estimation of survival prob-
abilities, detection probabilities, movement probabilities,
and so on.

However, model selection based on maximum like-
lihood is only applicable if a log-likelihood function can
be calculated (Burnham and Anderson 1998). Most
estimators lack such a function, but so-called mixture
models have recently been developed that use maximum
likelihood estimation for populations with heteroge-
neous capture (or detection) probabilities (Norris and
Pollock 1996, 1998, Gould and Pollock 1997, Gould
et al. 1997, Pledger 2000, Chao et al. 2000, Pledger
and Schwarz 2002). In particular, Pledger (2000)
developed maximum likelihood estimators for all eight
capture-recapture models developed by Otis et al. (1978)
and likelihood ratio tests to choose between these
models.

Besides these new non-parametric estimators, new
accumulation curve models have also been developed.
Following papers by Soberón and Llorente (1993),
Nakamura and Peraza (1998), Keating et al. (1998),
Christen and Nakamura (2000), Gorostiza and Dı́az-
Francés (2001), Dı́az-Francés and Gorostiza (2002),
Colwell et al. (2004), Mao and Colwell (2005) and
Mao et al. (2005) included nonhomogeneous pure birth
processes, maximum likelihood estimation and Bayesian
methods into the development and comparison of curve
models while Picard et al. (2004) developed a curve
model that can deal with different spatial patterns.

All these new and exciting approaches to estimating
species richness should be comparatively tested on real
and simulated biological data. We hope that the various
performance measures presented in Table 1 will help
researchers to evaluate the performance of various
estimators given different datasets and sampling proto-
cols.
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